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The hierarchical ferromagnetic N-dimensional vector spin model as a sequence 
of probability measures on R 'v is considered. The starting element of this 
sequence is chosen to belong to the Lee-Yang class of measures that is defined 
in tile paper and includes most  known examples (cp 4 measures, Gaussian 
measures, and so on). For this model, we prove two thermodynamic limit 
theorems. One of them is just  the classical central limit theorem for weakly 
dependent random vectors. It describes the convergence of classically normed 
sums of spins when temperature is sufficiently high. The other theorem describes 
the convergence of "more than normally" normed sums that holds for some 
fixed temperature. It corresponds to the strong dependence of spins, which 
appears at the critical point of the model. 

KEY WORDS:  Hierarchical ferromagnetic vector spin model; Gibbs measure; 
Lee-Yang property; Laplace transformation; critical point; thermodynamic limit 
theorem. 

1. I N T R O D U C T I O N  A N D  SETUP 

The main idea of this paper is that the subsequent progress of statistical 
physics will be connected with the extensive employment of methods of 
analytic functions theory as took place earlier with probability theory. 
These methods usually are applied to study such objects as probability 
distributiong (and Gibbs measures) on the basis of Fourier-like transfor- 
mations. The transformation used in this paper is the Laplace one. We 
exploit it to establish the notion of the "Lee-Yang property," which plays 
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a key role in this paper. We prove two theorems, which describe the 
thermodynamic limit at the critical point and above it (for T >  Tcr), for 
the hierarchical ferromagnetic N-vector model possessing the Lee-Yang 
property. The latter means that the probability measure that describes the 
initial distribution of spins (the Gibbs measure with zero interaction 
between the spins) possesses this property. Although similar and much 
more sophisticated results were obtained for the choice of this initial 
measure of the well-known ~0 4 type--first by BleheP ~ 3) and then by other 
authors (see, for example, ref. 5 and references in ref. 3 ) - -our  theorems 
describe the whole class of measures and are proved by means of the 
Lee-Yang property, which can be considered as an attempt to apply the 
methods mentioned above. Moreover, it becomes clear that the class of 
measures possessing the Lee-Yang property forms the natural family of 
measures for which the "usual" properties are typical. This implies if one 
wants to obtain some "unusual" properties of the model, one should 
choose the initial distribution out of the Lee-Yang class of measures. The 
detailed consideration of the connection between the analytical properties 
of the Laplace transforms of Gibbs measures and the thermodynamic 
properties of corresponding models will be done in a forthcoming paper. 

This work is a direct continuation of our earlier paper Is) and its main 
results which we need here are sketched below. Let ~ be a countable set 
and for every n ~ Z + - - - { m ~ Z l m ~ > 0 } ,  let there be given a partition of 

on subsets AI,. ''~, r s Z + ,  each of which consists of 6 (a certain integer 
number not less than two) subsets A ~''-~). The zero-level subsets are the 
elements of Z themselves. For  each i E ~, let a random vector a(i) (spin) be 
given and for some finite A c S ,  we denote a(A)=~i~.~a(i ). Within the 
framework of the hierarchical model, the spins a(i) are dependent in such 
a way that the probability distribution of a(A ~'') is defined by that of 
a(A ~''-~) as follows. For every Borel subset B ~ R N, we denote 

Prob{a(A I''l) ~ B} = P,,(B); Po =Z 

Then 

dP,,(a) = y,]-i exp[ �89 _ 1 ) ~-,,( I +~a 2 ] T,,(a) da 

( , )  
" ~  r =  ] 

(1.1) 

where a 2 = (a, a) is the scalar product in RN; 6(- ) is the Dirac 6-function; 
Y,, is given by the normalization condition P(R N) = 1 ;Z is some prob- 
ability measure describing the initial distribution of a(i);fl>~O is the 
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inverse temperature; and 2 > 0 is the parameter which describes the decay 
of the interaction between the spins. The ferromagnetic nature of our model 
lies in the fact that the quadratic form of a in exp(. ) in the expression ( 1.1 ), 
which describes the interaction between the spins in A'"', is positive. 

The natural physical condition imposed on the initial measure X is the 
existence of its Laplace transform 

Fz(v)=;H,,exp(v,a)dz(a), I)eR N (1.2) 

as a suitable function defined on R N. If this condition is fulfilled, all P, 
possess this property, provided they exist as measures. Let O(N) be the 
group of orthogonal transformations of R n. For B c R N and UE O(N), we 
set UB= {veR'Vl U-IveB}. 

Definit ion 1.1. The measure X is said to be isotropic if for any 
Borel subset B and arbitrary UE O(N), z(B)=z(UB). 

Let ~ denote the family of entire functions on C that can be written 

f(z)=exp(Oz) l--I (1 +z/z)  
./= I 

01>0; ),.: ~>),j+ ~ >~ O; ~.),.:< ~ 
J 

(1.3) 

Definit ion 1.2. The measure Z is said to possess the Lee-Yang 
property if there exists ft(z)e cj, such that Fz(v) defined by (1.2) satisfies 
the relation Fz(v)= J~.(v 2) for all v e R u. The set of all measures possessing 
the Lee-Yang property is denoted Jr 

The detailed description of such measures can be found in ref. 9. Here 
we only point out some facts which are used in our consideration. The 
isotropic Gaussian measures possess the Lee-Yang property and for 
each such measure /~ the corresponding function f ,  is exp(0z) with 
O=(a'-),/2~, where ( . ) / ,  denotes the expectation. Every f E Z #  differs 
from zero in some neighborhood of the point z = 0 ;  thus there q,(z)= 
log f(z) is a holomorphic function possessing the following series expansion 
representation: 

cp(z)= ~ ~.  = (1.4) 
k = l  
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Proposition 1.1. The derivatives of cp defined by (1.4) obey the 
sign rule 

( - 1 )  k-L cp(k) ~> 0, k e N  (1.5) 

The equalities in (1.5) are possible simultaneously for all k/> 2 and only in 
the case f(z) = exp(0z). 

The proof follows from (1.3). The next assertion was proved in ref. 10. 

Proposition 1.2. Let X ~ J/U and J)(z) be given by Definition 1.2. 
Then the derivatives cp~)= (D k log f~)(0), k = 1, 2, obey the estimate 

L (2) 2 
,J~x I < ~  (1.6) 
(~o~ll) 2 +2 

Remark 1.1. For givenfz ~s we define mk--Y' . /y~,k~N, where 
),j are as in (1.3). Thus cp~ II O+ml .~(A-) )k-i = ,Soz --(--1 (k-1)!mkfork>>,2,  
and (1.6) can be rewritten as 

IT/~ 2 

Proposition 1.3. For given f l > 0  and n ~ Z + ,  let the measure P,, 
defined by the relation (1.1) exist and the initial measure Z belong to o#x. 
Then P,, also belongs to J /u.  

This statement is equivalent to Theorem 3.1 proved in ref. 8. It plays 
a key role in our consideration. For fl--0,  P,, is the convolution of an 
appropriate number of measures P,,_ t which corresponds to the absence of 
the dependence between the spins a(i). In this case, the classical central 
limit theorem for independent identically distributed random vectors (7~ 
ought to hold. In order to obtain the nontrivial limit of the sequence of 
sums {a(A("~)}, it is necessary to normalize them in accordance with this 
theorem by putting a(A ('')) ~ a(A ('')) 6 -''/~- (recall that A ('~ contains 6" 
points). Besides, we can put a(A ~''~) ~ a ( A  (''~) 6 -''(~ +/')/-~ with some p > 0 .  
The latter is known 41~) as the "abnormal" normalization is contrast to 
the case of independent spins. Suppose, for some f l>0 ,  the sequence 
{a(A ~''~) 6 "/-'} converges to a nontrivial (nondegenerate) limit. Then the 
weak dependence between the spins (7) holds at this temperature. But if, 
for some f l > 0  and p >0,  one gets that the sequence {a(A ~'')) 6 -'(1 +~,)/2} 
converges to the nontrivial limit, then the strong dependence between the 
spins appears. This is peculiar to the critical point of the model. Both such 
convergences are shown to hold below. 
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Let us describe the model we deal with more precisely. First, we 
restrict the values of 2 to the interval (0, 1/2). Now let g=min{1/6;  
(1 - 22)/4} and 

a(it) =c~ 1/z ~ a + , ~  1 (1.7) 

D e f i n i t i o n  1.3. 
,1,,/~v consisting of measures Y with the properties 

I "~-'>' 2 m,  2 
0 < I~--~-I < a(2); --= (1.8) (1) 2 ~ (c#,. ) m 7 4 N + 2  

where ca ~~ mk are as in Proposition 1.2 and Remark 1.1. 1 Z , 

The case of purely Gaussian initial measures (when ~ ] ) - - 0 )  is trivial-- 
all elements of the sequence {P,,} can be computed explicitly [see below 
(3.2) with/7,, = 1 ]. 

For 2 close to zero, a(2) is close to ~,/2, which means J/,v(2) includes 
almost all non-Gaussian measures from o@v [see (1.6)]. For it close to I/2, 
g and a(2) are close to zero and the restriction of ,2> [cp z ] used in the defini- 
tion of-J/,v(2) becomes essential; but in any case J~v(2) is nonempty (see 
Remark 1.3). Denote 

dPr n ~ Z +  (1.9) 

with P,, given by the recursive formula (1.1). 

T h e o r e m  1. Let it e (0, 1/2) and X ~ JgA,(it); then there exists fl ,  > 0 
such that the sequence ,p,aj  n e Z  [P~a)=Z, f l = f l , } ,  defined by (1.1) and 
(1.9), weakly converges to the isotropic Gaussian measure with the 
variance N/O ,.  

T h e o r e m  2. Let 2, X ,P .  be as above; then the sequence ,p~o) I ~ t l  t 

n~Z+lPlOJ=X, f l<p . }  weakly converges to some isotropic Gaussian 
measure. 

R e m a r k  1.2. The measure dz(a) = Cexp[a(a)'--u(a'-) 2] da belongs 
to J'CN for all N E N ,  a ~ R ,  u > 0 .  ~9~ It may belong also to ~ v ( 2 )  provided 
u is sufficiently small [ if a(2) in (1.8) is small ]. Bleher ~ l )(N = 1 ) and Bleher 
and Major <-'~ ( N >  1) proved similar convergence for the initial measure X 
of such type with a = -  1 and u closed to zero. A detailed survey of the 
results in this direction can be found in ref. 3. Theorem 4.1 of this paper is 
related to the matter of this remark. 

For  given 2e (0 ,  1/2), let dgu(2) be the subset of 
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Remark 1.3. As follows from Definition 1.3, the family o#x(2) 
consists of measures Z with sufficiently small ~21 cPz 1. In order to show that 
J/^,(2) is not empty, let us consider Z~J/N such that fz  is given by (1.3) 
with 0 = 0. This measure exists. <9" ~ol Then the second condition (1.8) holds 
[in view of (1.6)]. If for this measure [~P~I is too large and the first restric- 
tion in (1.8) does not hold, we construct a new measure by taking the 
convolution of Z with some Gaussian isotropic measure which has the 
variance large enough. This new measure has the same @2~ but large 
enough @t~, and hence belongs to  ,/ffN(~). 

Now we use Proposition 1.3. For  each P,,, there exist the function 
fp,, E 5 ~ , 

f+"(vZ) = ~R' exp(v, a) dP,,(a) (1.10) 

in accordance with Definition 1.2. The relation (1.1) implies that the 
sequence {fp,(z), n ~ Z+} can be arranged also recursively as follows: 

f,,..(z) =-~ ,  exp fl(c$;" - 1 ) ~ - "  t +;~ A ,v [Je._,(z)] 

fp,,(z) = J~(z) 

AN = 2ND + 4zD2; 

f l (6+-- 1 )c~-""+;'~Au][f+.._,(z)]'~}_. 
(1.11) 

= 0 

d 
D = - -  (1.12) 

dz 

The formal operator exp(aAN) above will be defined in appropriate 
topological spaces of entire functions as a continuous operator. Then the 
uniform convergence on compact subsets of C of the sequences defined by 
(1.11) will be shown. This corresponds to the weak convergence mentioned 
in Theorems 1 and 2 that is established by the continuity theorem (ref. 7, 
p. 27). 

2. M A I N  O P E R A T O R  

For some b > 0 and an entire function f(z) ,  we define 

Ilftlh = sup{b -k If'k'[ [ k E Z + } ;  f ' k '=(D~f ) (O)  
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and 

a k 

[exp(azfN) f ] (z )  = ~ ~.~ (Zlkuf)(z) 
k = 0  

(2.1) 

Proposition 2.1. For given functionf(z) and b > 0 ,  let Ilfllh< oo. 
Then, for all a e (0, 1/4b), [exp(aAN)f](z) defines an entire function such 
that 

Ilexp(aAN) fll,.<~l(1 -4ab )  -u/2 Ilflih; c=b(1 - 4 a b ) - '  

The proof follows from Lemma 2.8 of ref. 8. Denote 

~ , =  { f (z )  l llfllb < 0o, Yb>a} 

This set equipped with the pointwise linear operations and the topology 
generated by the family { II. IIz,, b >a} becomes a Fr6chet space with the 
following propertiesJ 8~ 

Proposition 2.2. The set of all polynomials is dense in ~,,. 

Proposition 2.3. The relative topology on every bounded subset 
B c ~,, coincides with that of the uniform convergence on compact subsets 
of C. 

For the set ~ defined by (1.3), denote &au=&ac~d,,. By means of 
Proposition 2.1 and the properties of AN defined by (1.12), the following 
assertion was provedJ 81 

Proposition 2.4. For all n~N,  N e N ,  and ae(O, 1/4b), the 
operator exp(aA N) maps ~ ,  into ~c, where c = b( 1 - 4ab) - i. 

Therewith, the validity of Proposition 1.3 follows immediately. In the 
sequel, we will use the following variant of the exp(aAN) definition. We set 

(2.2) 

where 

wN(z) = 2~-q! F(N/2 + l) 
/ = 0  

(2.3) 
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By means of the identity 

F(z + M + N) m i n ( A , I , N )  n !  

F(z+M)  F ( z + N ) -  ~' C~'tC"uF(z+n)' z~C; M , N , ~ N  (2.4) 

we can prove the following statement. 

P r o p o s i t i o n  2.5. For given b > 0  and a~(0 ,  1/4b), both expres- 
sions (2.1) and (2.2) define the same operator on ~4,,. 

Proof. Proposition 2.2 implies that this statement needs to be proved 
only forf(z)=z'". From (2.1) 

a k 2"-"'m! F(N/2 + m )  z .... ~ 
exp(aAx) z" '=  ~ ~.T 22,,,7:-~--m_~-~.v ~ ( ~ + m  L_ k) 

k = 0 

(2.5) 

At the same time, the definition (2.2) yields 

k=o 22kkII'(N/2+k) F - ~ + m + k  (2.6) 

Taking into account the identity (2.4), we have 

r a i n ( m ,  k ) 

E 
s i l O  

t- =. 22kk! 

k] m! n! 

n! ( k - n ) !  n ! (m-n) !  F(N/2 +17) 

z"m! 22'"a ...... F(N/2+m) Z 22~k-,,l(k_n)! 
=exp -- n! (m--n)! 2 2" F(N/2 +n) ~. 

It ~ 0 = It 

L, ~ . . . . .  z"m! 22"'a ...... F(N/2 + m~=, 
RHS(2.5) ! 

,,=o n! (m-n ) !  2 2'' F(N/2 + n )  

Now, for t > 0, let us consider the action of exp(�89 AN) defined by (2.2) 
on the function g(z) = exp( �89 uz) f (z)  with f (z)  e 5 ~ For u > 0, g(z) belongs 
to 50. Thus the function 

g,(z) = [exP(�89 Ax) g] (z) (2.7) 

also belongs to 50. For u <0,  the function g(z) may not belong to 50, 
but the situation with g,(z) given by (2.7) remains under the control 
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due to the integral form of exp(�89 AN) and the following identity proved in 
ref. 8: 

1 

xexp[ l t (1 - -u t )ANl f ( i lZu t )2 ) ;  u t < l  (2.8) 

L e m m a  2.1. For  given g(z), let there exist f ( z ) e~ ,  such that 
g(z)=exp(-�89 with some u>2a. Then, for all t>~0, (2.7) defines 
an entire function g,(z), which can be written 

g,(z) = exp( - �89 f,(z) 

with u, > 0; f,(z) ~ 5e. 

Proof. Making use of the definition (2.2), we get 

g, ( z ,=exp( -~ t )h , ( z )  (2.9, 

For f ( z ) ~ , , ,  all t > 0 ,  s > 0 ,  b>a, 

0 <f(2ts) <~ Ilfll~, exp(2tsb) (2.10) 

Consider 

s h,(z)= s u/2 le q.v u exp(-tus) f(2ts)ds; hC,"~(O)=(D"h,)(O) 

For u > 2a, we choose b e (a, u/2). Then the estimates (2.10) yield 

0 < h~,'~ <~ Ilfll h (2 t ) - "  [ 1 + t (u-  2b)] -^,i2- ,, 

This implies that both functions h,(z) and g,(z) are entire for all t > 0. By 
means of (2.8), we get 

(l z) 
g , ( z )= (1  +ut)-N/2exp 2 l+-ut f,(z) 

f , ( z ) = e x p [ I t ( I + u t ) Z l N ] f ( ~ I ~ )  
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For f (z )  e ~,,, f ( z / (  1 + ut) "-) e s with a( t) = a/( 1 + ut) 2. In order to prove 
the existence of J)(_-) as an entire function, we should show that the 
following inequality is satisfied for all t > 0: 4(t/2)( 1 + ut) a(t) < 1. But 

< <1 ,  4 t ( l + u t )  a ( t ) = l + u t  ut > 0 

Thus Proposition 2.5 yieldf,(z) e c~, with b = a( I + ut) -~ [ 1 + (u - 2a) t] - 
! 

Below we use the following notations: ~k(z) = log g(z); ~b,(z) = log g,(z). 
These functions are holomorphic at the point - = 0 whenever g(z) obeys the 
conditions of Lemma 2.1. 

k e m m a  2.2. Suppose the conditions of Lemma 2.1 are fulfilled. 
Then the derivatives ~0~,kl= (Dkq;,)(0) obey the sign rule 

( - 1 )  k-aqj~,k~>0, Vt~>0, Vk~>2 (2.11) 

The equalities are possible simultaneously for all k and only for f ( z ) =  
exp(0z). 

The proof follows from Proposition 1.1, Remark 1.1, and Lemma 2.1. 

k e m m a  2.3. Suppose the conditions of Lemma 2.1 are fulfilled. 
Then there exists at most one value of t />0 satisfying the equations 
~,~,KI=0. For this value, ~b~, ~ is strictly decaying as a function of t. 

P r o o f .  The function g,(z) given by (2.7) can be considered as a 
solution of the following Cauchy problem: 

Og,(z) 1 
(dNgt)(g), go(z) = g(z) 

Ot 2 

Putting here g ( z ) = e x p  qJ(z), g , ( z ) =  exp ~J,(z), we obtain 

OqJ ,( z ) 
Ot =N(DqJ ' ) (z )+2z[(D2~k ' ) (z )+(D~') ' - ( z )] ;  ~k~ (2.12) 

For every t ~> 0, the function qJ,(z) is holomorphic at zero. Thus one gets 

0q, l" 
= ( N +  2) q;12, + 2(q/~,, ,)2 (2.13) 

Ot 
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But ~,-'~ ~< 0, as follows from Lemma 2.2. Let us consider the case ffc,2~ < 0. 
Then at any point where r the right-hand side of (2.13) is strictly 
negative and hence the function ~b~, ~ is strictly decaying. For a differentiable 
function, such points are at most one. The case ffc,-'~=0 is trivial. I 

3. M A I N  E S T I M A T E S  

Let us return to the relation (1.11). For sufficiently small values of fl, 
{fp,,, n ~ N} exists as a sequence of analytic functions. The strict meaning 
of this statement is now to be established by the methods derived above. 
For further convenience, we eliminate the explicit dependence of fl by 
introducing the functions f , ( z )= J);,(flz), for which we get from (1.11) 

f , (z)  = ~  exp (6;" -- 1 ) 6 - " "  + ;-' LIN [ f , _  ,(7.)] a (3.1) 

with the same Y,,. For XeJ/x(2) , fx(z  ) obeys (1.3) with some },i>O. 
Denote by 0o the value of its parameter 0 in this representation and let 
L,a, = { f e  L~' If(z) = exp(0z)}, 5-~ = ~ \ ~ c ; .  

L e m m a  3.1. LetJ~(z) be chosen in L~; then: 

(i) Ji,(z)aff  ~ for all n a Z +  and arbitrary f i e [0 ,  1/20o). 

(ii) There exists an entire function ~,(z) such that for all z a C ,  
~,(z) = OJi,(z)/afl; this statement holds for all n e Z + ,  f le  (0, 1/20o). 

(iii) For 0o=0,  the above statements hold for all f l>0 .  

Proof. For given f (z)  ~ 2 ,  denote f (z )  = exp(0z) h(z), where h is the 
infinite product in the representation (1.3). For t < 1/20, we get by means 
of (2.8) and Proposition 2.5 

1 
exp (~ t d,v) f ( z )=exp  ( ~ )  h,(-) 

with h,(z) obeying (1.3) with 0 = 0. Applying this scheme in (3.1), we get 

6"UoZ 6-"~')] h,,(z) f ,(z) = exp(u,,z) h,,(z) = exp [ 1 - 2~o(1Z (3.2) 

with h,,(z) obeying (1.3) with 0 = 0 .  Here Uo=fl0 o and is strictly less 
than 1/2 whenever f i e [0 ,  1/20o). This proves statement (i). Recall that 
fo(z) = J~(flz), which yields ./~o(Z) = z(Dfz)(flz) = (z/fl)(Ofo)(Z). This means 
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that statement (ii) holds for n = 0, and ~ ( z ) ~  ~,,,. The latter is obtained by 
estimating IIf~ I[,, with f)(z)  = exp(uoz) h0(z). Assume ~ ,_  i(z) eod,,,,_, with u,, 
given by (3.2). The formal derivative can be computed from (3.1), 

f,(z) = y~, (exp I ~ (~-1 ~ 't(l+)')Z~Nl[flt--I(Z)]'$--Iftt--I(Z) 

--f,,(z){expI~(f"--l)~-'"'+~" AN] [jl,_,(z)]'~-'~,_,(z)}:=o ) 

As it was proven above, J l , - , (z)  obeys (3.2) hence belongs to ~,,,,_,. Thus, 
in view of Proposit ion 2.1, we have 

e x p [ � 8 9  ' " t+~"LIu][ f , ,  ,(Z)]'~-' .~, ,(Z) e.~'.,,,, 

which proves statement (ii). The case 0o= 0 is obvious. | 

Denote cp,,(z) = log Ji,(z); q~,,~" = (Dk~o,,)(0); fc,~-, = (D~jl,)(0), k ~ N. All 
these .^,k, f~,~-~ v,,, , are functions of/3 defined on [0, 1/20o). 

C o r o l l a r y  3.1.  For  all n e Z +  k e N ,  the functions ^ok) and /.~k~ 
are differentiable on (0, 1/20o). 

Let 

exp~b, ,_i(z)=g, ,  , (z)=exp(--~o ''~ z)Jl,_,(z) - - l l - -  I ( 3 . 3 )  

Insert Jl,_,(z) in the form exp(~o~,,'~,z) g,, ,(z) into (3.1) and use (2.8). 
Then 

1 ) exp(/t,,qL,_~z) exp( 1 ,,#,,-,d,v)[g,,_t(zO -/zT,)]' f , , (z)=--y-(#, ,~  ' x,,2 ,,~ t . . . .  
1 .  

(3.4) 

where 

6 
/ .t , ,- 1 --(1 -- ~-~') O-c,,-,>(, +~)2q,,,"(') 

(3.5) 

I I .  - -  

t,, - (3.6) 
2~oc,, I~ , 

For t ~ [ 0, t,,], let us consider 

exp R(t, z) = exp(�89 AN) [ g,,_ i(ZC~--~)]'~ (3.7) 
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I f f e ~ ,  then m~ > 0  (see Remark 1.1) and r  >0.  There- 
fore, each such a function belongs to ~ ,  with some a < f  c~. Hence the 
function [g,, ~(z~-2)] ~+ meets the conditions of Lemma 2.1 [as g(z)]. 
Then the function exp R(t, z) possesses the properties stated by Lemmas 
2.1-2.3. Moreover, we have for R(t, z) and Rk(t)-(D~R)(t ,  O) 

R(O,z)=~t~,,_l(zf- '-)=--~-Ir i(z~-'-) (3.8) 

R t ( 0 ) = 0 ;  Rk(0) =61 -z~co~k) " k>~2 (3.9) 1 1 1 - -  ] 

Comparing (3.7) and (3.4), we also deduce 

M 
R(t,,,zlu~,)=cp,,(z)--iI,~oc,, '~ ~z--21og(/~,,O-t) + log  Y,, (3.10) 

u-2~ "-'l~ -t ..~l~ ) (3.11) Rl(t,,) =~,, ,q',, --t ,,~',,-M 
- 2 k  (k) Rk(t,,) =/t,, ~o,, , k>~2 (3.12) 

For R(t, z), we can get an equation of the type of (2.12) 

OR(t, z) 
Ot -N(D--R)(t 'z)+2z[(D~-R)(t 'z)+(D:R)2(t 'z)]  

and 

c?Rl(t) 
O----~ = ( N +  2) R2(t) + 2R~(t) (3.13) 

ORz(t) 
- -  - ( N + 4 )  Rs(t) + 8R~(t) R2(t) (3.14) 

Ot 
Having in mind that R~(0)=0  [see (3.9)] and applying Lemma 2.3, we 
obtain 

R~(t) <0,  Vt ~(0, t,,] (3.15) 

By means of Lemma 2.2, we get R2(t)<O, R3(t)>O. Then taking into 
account (3.15) in (3.14), we have 

OR'-(t)>o, tE(O, t . ]  (3.16) 
Ot 

For given t e (0 ,  t,,], there exists r e ( 0 ,  t) such that 

(OR~(t)'~ 
R , ( t ) = t \  ~3t j ( r ) = t [ ( N + 2 ) R , ( r ) + 2 R ~ ( r ) ]  
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Taking into account  (3.15) and (3.16), we obtain from the latter 

R,(t)>t(N+2)R2(O), Vt ~(0, t,,] 

Kozitsky 

(3.17) 

The estimates (3.15)-(3.17) and the "boundary"  condit ions (3.9), (3 . l l ) ,  
and (3.12) can be used to prove the following statement. 

Lemma 3.2 (Main  Estimates). F o r  a l l n ~ N ,  

q~,~, o ~ 4_,0, (3.18) 

~o',' ) < p,,~o(,' ) , (3.19) 

(pl,]) ~,_,.. . . . . . .  (nl,~ , + (N  + 2)(1 _ 6-~. )p,,~3 (,,- III, + ~.) 6 -3 q),, - 112) (3.20) 

4. PROOFS AND DISCUSSION 

The proofs of our  theorems are based on the propert ies of  the family ~J'. 

Lemma 4.1.  Let {f,,(z), n ~ Z + l f , , ~ 5  ~ be given. Let also the 
derivatives ~o(,* ' = (D k log Ji,)(0) meet the following conditions: 

(i) {cp(, ' '} converges to q~>0. 

(ii) {~0~,7 ~} converges to zero. Then the sequence {J;,} converges to 
exp(cpz) in .~,, with a = sup{ q)(,, ' ~}. 

Proof. Let 0,, and ),j(n) denote  the corresponding parameters  Ji, in 
the representation (1.3). Then 0,,~<~o~,,'); hence our  sequence {f,,} is 
bounded in =~,, and thus its uniform convergence on compact  subsets of  C 
is to be shown (see Proposi t ion 2.3). But in view of  the Vitali theorem, we 
can show this by proving the pointwise convergence of {Ji,} on the real 
half-line R+ = [0, + co). For  each nonnegat ive ~, one has exp(cz-�89 2) ~< 
1 + c~ ~< exp(~). Making use of this, we have for arbi t rary z ~ R+ 

exp [z (0 ,  + m,(n))  - �89 <~Ji,(z) <~ exp[z(0,,  + m ,(n))]  

where, as above, m , ( n ) = ~ i ~ , ~ ( n ) .  This estimate can be rewritten as 
follows: 

. I l l  1~2 12) exp(.~o,, -- ~_ ~0,, ) ~< J;,(z) <~ exp(zq~(,, ' ~) 

The latter implies the stated convergence. II 

To  prove our  theorems, we introduce [see (1.9)] 

f( , / ' )(z)  = J ; , ( z 6 - ' " '  + " ' ) ;  ("~ - (4.1) J p,, ( - )  = f , , , , (-6 - ' ' ( '  + , , )  
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and  d e n o t e  

#p,,(z) log f ( ,? ' (z) ;  .-_ i k, = q,,, = (Da~b,,)(0) (4.2) 

(),,(z) log  r --(k)=(Dk~b,,)(0)  (4.3) = j .  ~ 1 ,  g . ' .  

T h e n  we o b t a i n  -~k) -,,k (a-j ,.(a-) O , , t+a)a- (~-~ ~0,, = 6 ~o,, , q ,  = (p,, . D e n o t e  a l so  

v,,=~-Ilt , ,;  x , ,=6- I -a t l , ,  (4.4) 

w h e r e  it,, w a s  i n t r o d u c e d  in (3.5). T h e n  we have  the  fo l lowing  e s t ima te s  as 
a c o r o l l a r y  o f  L e m m a  3.2: 

~p,2,>v4 ~ ,~(2, (4.5) 
I J  r i t  - -  I 

- I t~  v ~ l l )  ( 4 . 6 )  fP,, < , , ~ . - i  

- I J )  . ~ l )  + ( N + 2 ) ( 1  -~. - I  3 - ~ , , - t ~ - ~ _ ~  ( 4 . 7 )  (p,, > v , , % , _  I - ~  )~ v , , ~  ( p , , _ l  

~b 121 > (5-';" - ~ .4 -,-~) (4.8) 
n h n ( ~  n - -  I 

~o,,̂ ") <x,,~b',, ')_ , (4.9) 

- l ~ ) - . -  ~li) + ( N + 2 ) ( 1 - - ( 5  ~')6 2~ ~h'3(b ~-') ~0,, "" '~,,V',,- i ._, . . . .  ~ ( 4 . 1 0 )  

F o r  g iven  Z~,'[/N(2), we set 

N +  2 ~o~ ~ 
a z =  2 (~o~ ~) -' (4.11) 

T h e n  a z < a (2)  I- see Def in i t i on  
such t h a t  

D e n o t e  

1.3 a n d  (1 .7 ) ] ;  t hus  there  exis ts  e ~ ( 0 ,  g) 

1~1: l 
az = 61/2 (5;" +':--"-----'~ (4.12) 

~ l l )  = 1  ( J ~ -  r5 - ' :  1 (51'2 
(4.13) 

2 6 ;  - -  1 2 6 I/2 _ az 

~ 2 ) =  1 (c~;"- (5-':)( 1 -  ~ - ' : )  c~ I ;. - 2,: (4.14) 
2 ( N + 2 )  ( 6 ~ ' -  1) 2 

The  p r o o f  o f  T h e o r e m  1 is b a s e d  u p o n  the fo l lowing  i nduc t i ve  l e m m a .  
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L e m m a  4.2. Let the initial measure Z be chosen in ~r For 
this Z, let e, ~pl~i,q~2~ be given by (4.12)-(4.14) and I,, be the triple 
(i~,; i~, ; i~,) of such statements: 

i], {3]7, + e l 0 ,  1/20o)" ^ " '  q>"', = q,,, = / ~ = K + ;  ^,, ~o,, < ~ " ' , 1 7 < 1 1 , ,  + } 

G = {~/7,. e [0, 1/20o). ^ ~  1 . ~ i ~ _  -" ~,, = . / 7 = ~ , . , v , , .  ~ - � 8 9  

Then (a) Io is true, (b) I,, implies I,,+t for all n e Z + .  

P r o o f .  For n = 0 ,  we have ,~ t~_  t~.,~ ,~c-~_tt~-,,~-~ Thus we set 
" fro  - - P W  Z ' "i~O ~ # "  "t" Z �9 

1 1 ~ $ ; - 6 - ' :  
/7~ = 2  - ' ' ' ;  f l ' + - 2 - ' "  6;. I ~ / 7 ~  (4.15) t/"x ~ x  - -  

and show that  tiff < 1/20 o. For  ]7 =/7c~- and a z given by (4.11), the defini- 
tion (4.15) yields 

1 ~ I/2 
/7,r G "  = G ') = @")  - ]~ ~ ( 2 ) / / ~ 1 1 ) ~ 2  ~ 2 6 i'2 + ~',vv-o /~v-o s 

This equation can be solved with respect to ~b~o ~ ~: 

~b~,t'=7 1 +  l+16--~TTy-2) 

where lfi k are defined for fc~r as in Remark 1.1. Then 

b N + 2  
N = -2 

+ = = " ~ + m l  f l o 0 o + r h ,  ( o ' o ' ) < � 8 8  'iz] �89 ';2 ' " 

We have estimated ffL~ by using (1.8). This implies flo + <1 /20  o, hence 
fl~- < 1/20o in view of (4.15). Thus i~ and i o are true. Proposit ion 1.1 and 
Definition 1.3 imply 4bCc~' < 0, 4o'~ ~ < 0. For  f le  [0, fl,~ ], this yields 4b~c?' >~ 
( /3~ ,  ~ ,,, J-~PT ; thus 

j '~ ( 6 ; _ 6 - < , ?  ~ <k{>2, >~ - l .  
(<p,.,,)2\ ~.--7 / 

2(N+2) \ ~'~- 1 ) 

1 (6~':" - -  6 - ' : ) (  1 - -  6 --':) 61/2 ~/ l~l(2i 

= - 2 ( N +  2) (Sx-- 1) 2 
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The latter estimate is based on �89 + 2e ~< �89 + 2g~< 1 - 2. This proves i03 and I 0. 
To prove the implication I,,_ t ~ I , , ,  we remark that  for fl=fl,,+_ ,, i],_ t 
yields ~bc,,t_~ I =~( l~  and x , ,=6 ' :  [see (4.4) and (3.5)]. Then, by means of  
i 3_ ,, (4.14), (4.18), and (4.10), we obtain 

~bl,, II > d':~ II~ + ( N +  2)( 1 - ~ -~') c5 -'~- t + 3,:q~t 21 = qsc~ 

For  fl=fl,-/_ i, we have ~b~,,l_)t = 1/2 and x , ,=  1. Therefore,  ~b~,,t)< 1/2 for 
fl<<.fl,,_s, as follows from i~,_ t and (4.9). Lemma 3.1 and its Corol lary 3.1 
imply ~,,~ ~ is a cont inuous  function of  fl; thus there exists at least one value 
of/3 =/3,,+ e (fl, ,  i,/3,,+- i) such that  ~,,, ~-'l~ = q5 ~j~. The smallest such one is set 
to be/3,,+. The existence of/3, ,  ~ (fl,~- i, fl,,+ ) can be established in the same 

, -< + and then ~l~ q~,> _ This way. For /3  ~< fl,,+ we have/3 -.~/3,,_ i ~, ,_ j ~< due to i], i. 
yields x,,<~d':. Then we get from (4.8) 

~bC,~ > d2;_ t +4,:cb~21 AI_,> ~>~2~ 
. T , , -  ~ > t  r  I 

where the following estimates were used: ^ ~21 q~,, <O, V n ~ Z + , 2 2 - 1 + 4 e < O .  | 

Let us consider the set zl,, = {fl ~ R + 1 �89 < ~b~,, ' '  < q~'"}. Lemma 4.2 
implies zl,, ~_ (/3,~,/3,,+ ), z~,, is nonempty  and open. Let us prove z/,, __%_ z~,, ~. 
Suppose there exists some fl ~ zI,, that  does not belong to z/,,_ t. For  this fl, 
either 4~,,'_~, ~< 1/2 or  ~b~,,'_~ t >~ ~ .  Hence, either ~b~,,t~ < 1/2 or  ~b~,,t)> q~'~ in 
view of  arguments used above. This runs counter  to the supposit ion fl ~ zl,,. 
Let D,, be the closure of  d,,; then D,, ~_D,,_ ,, D,, is nonempty,  D,, ___ 

,e,, -.,.~" ~. Let D ,  = O,,D,,;  then D .  is closed and nonempty.  
D e n o t e / 3 .  = inf D .  = m i n D , .  Then: 

(i) F o r / 3 = f l . ,  

I ~(11 ~11 )  ~<w, ,  < V n ~ Z +  (4.16) 

(ii) F o r / 3 < / 3 . ,  there exists n(fl) such that  ~,,,/~ < 1/2. 

Indeed, from the definition, D .  c { f l l ~ <  ~ l t ~ < , ~ , ~  _ _ ~u,, . ~ v  ~ , V n ~ Z + .  Sup- 
pose ~b~,, ~) = I/2 for some n; then ~bl,,t, ~ < 1/2 for all m > n, which may occur  
wheneve r /3 ,  does not  belong to all D,,, with m > n. The latter contradicts  
the definition of  f l . .  The  case 9~,, ~ =  ~ ~ can be excluded similarly. Sup- 
pose there e~ists some f l < f l ,  such that (4.16) holds. Then  this fl belongs 
to D . ,  which contradicts  the definition of  /3.. The  case ~b~,/'>~q ~ is 
impossible for this /3, because /3. ~< inf{fl,,+}, which yields ~bl,t~< ~ t ~  in 
view of  i~,. In what  follows, we prove such a statement. 

I . e m m a  4.3.  Let the condit ions of  Lemma 4.2 be fulfilled; then 
there exists f l .  > 0 such that  the inequalities (4.16) hold. For  fl < / 3 . ,  there 
exists n(/3) such that ,e,,~/~̂ ~'~ "-~ 1/2. 

S22/87 '3-4-23 
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Proof o f  Theorem 1. Let the initial measure X be chosen in J/N(2). 
For  this X, there exists e obeying (4.12). Then  Lemmas 4.2 and 4.3 may be 
used. For  f l = f l . ,  (4.16) holds, yielding a',, <6L  Applying this estimate in 
(4.8), we get 

l~a',, ~)) < a  `-'~- ' + ' : ) "  I G : ' )  = a  ` :~ - '  +":>" lo ' -" l  

In view of e < g~< (I - 22)/4, this gives 

~b(,, 2) -+0, n--,  +oo  (4.17) 

Let us prove ~b(,, )) -+ I/2 for f l = f l . .  Fo r  this aim, rewrite (4.10) as follows: 

(201 , ' ) -  1) > 6a(2~b(,,'_ ) , - 1 ) + Oa(6 ;" - 1) x,, ~,, (4.18) 

) 2 + 2 ( N  + 2 )  ,^(~) ~,, t')~(1) - 1  (4.19) = ~ W , , -  l K . r P , 7 '  I 

Show that  7*,,<0 for all n ~ Z + .  If ~ , , ,>  O. then (4.18) yields 

(20 (,,',) - I ) > 6a(2~b(,, ', )_, - 1 ) 

The latter implies 

2 ( N +  2) 
~ ( ( )  _ _  ~ (~(2) ~'"+  I = (2V'"' - - 1 ) 2 +  e$ K"'+L . . . .  

,a -(l 2 ( N +  2) &,~: K >f i -  (2cp,,)_t-- 1)2q 0r ] 322- I +4r(o (2} 
I r m  - -  [ 

2 ( N  + 2 )  66 , :_  IK.2 Cb(2 ) ] ,.a. =62a a()) 1)-" -I- > - - -  a -  U , , ,  (2~ .... , fi _, . . . . . . .  ] 
J 

(4.20) 

sb(t) _ t  #, ,+l)~(-(i)_[ t ,,+,,, -" ~ + ".9,,, --5),  n ~ Z +  

which contradicts  the boundedness  of {@,l )}. Thus  ~,, ~< 0 and (4.19) gives 

(2~bl, l) - 1)2 ~< 2(N + 2) a '+>" [9,̂ ~2)[ 

Taking into account  (4.17), we obtain the stated convergence of {~b(,,~)}. 
To  complete  the proof,  we use Lemma 4.1 and obtain that the sequence 
{fl ,  ~), n e Z+  } convergence to exp(�89 which gives in turn for the sequence 
to- ,  n e Z + }  to converge to exp(z/2fl,). I J Pn ~ 

Here we have used e<g<~l/6" I<K, , ,<~ ' :  if ~(i) < 0  (I) , and K,,,+~< , , ~ m - I 
6~'K,,,. Thus,  assuming ~,,, > 0 ,  we have (4.20) and then 
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To prove  the second theorem,  we use certain addi t ional  propert ies  of  
our  model.  Begin with the following assertion. 

L e m m a  4.4.  Fo r  every f l < f l , ,  there exists ~ e ( 0 ,  2) such that  for 
all 17 >~ n( f l )  (defined in L e m m a  4.3), the following est imate holds: 

,, ~ _,v (4.21) 

P r o o f .  L e m m a  4.3 yields that  (4.21) holds for n = n ( f l ) .  In this case 
h',,+ i < I and (4.9) gives ~ltl ^lt~ < rp,, Denote  (P'.+ I 

}/ ~'"~/~) " log(~ a -- 1 ) log c~ (4.22) = m i n  log ~(j~ , 
"F n(/~) + I 

Then  (4.21) holds for n(fl) + 1. Let it hold for some n -  I. Then (4.9) yields 

^ ~  _ 1 6 _  ( . . . .  (/~)1r ~ r  

But f rom the definition (4.22), one has 6 r  ~ a -  1, which gives 

< I  
1 - ( 1 - c~ - ~ )  ~ -~ ... . .  ~/~- i~: 

for all n > n(fl) + 1. Therefore,  (4.21) holds for all n ~> n(fl). | 

The  est imate (4.21) implies that  the p roduc t  1-Ii~=,,(m v,, converges. 

C o r o l l a r y  4.1.  For  f l < f l . ,  there exists C > 0  such, that  for all 
n > n( f l ) ,  

v,,v,,_ l " "  v,,im <~ C (4.23) 

~~2) C 4 ~2 )  I~o, ' i < a - ~  .... .  c/m (4.24) "r 

The est imate (4.24) follows from (4.23) and (4.5). It  yields ~c,~l__. 0; thus, 
to prove  T h e o r e m  2, we have only to show the convergence of  {q?l]~}. 

I . e m m a  4.5 .  Fo r  f l < f l . ,  the sequence {(~I, t~} is fundamenta l  and 
hence convergent .  

P r o o f .  F o r  fl < f l . ,  we choose  n > p  > n(fl), and show that  ~ll~ ,~t~ ]t/J u - - W  p 

can be made  arbi trar i ly small. Fo r  this aim, we use the est imates (4.6) and 
(4.7). The  first one gives 

< v , ,  v , , _  , . . . v , , +  , ce " 
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while (4.7) yields in turn 

~{ I )  (.p,, > v , ,v , ,_ , . . .vp+,~plr '~  + ( N +  2 ) 6 - 1 ( 1 - - ~  -~)  

n -  [ 

• Z v,,v,,_,... ~,+_~v:L, ~_~,~,,2, 
s = p 

Taking  into account  that  v.,. > 1, "~" ~p.,.- < 0 ,  and the est imates (4.23) and 
(4.24), we get 

I t--  I 

-~,~ . ~ ~ I ~ + ( N + 2 ) ( I _ ~ - ; . ) , ~ - I C 3  ~. ~ ;..,'-~2~q~.~ (f in  > ~"nlJn - I " " l ~ p +  I ~0p 

s = p  

(~-- p( [ + A )  

> v,,v,,_ 1"'" Vp + ,~o', II - ( N +  2)(1 - g - : )  (5-tfTg"t/r 
1 - - 8  ' - ~  

Therefore,  

:~[I) :~(I)~;, , :'x(l} A . ~  p ( l + , ; . )  (v,,v,, , . . . v , , + , - 1 ) ~ , , " > w , ,  - w , ,  .~ , , , ,v , ,  ~ . . . v , , + ~ - l ) w , ,  - ~, 

where A does not  depend on p and n. Let us est imate the product  of  v. 
Keeping  in mind (4.21), we get 

~=o / I 1 1 - ~ - / c  

~<exp 1 -  -c  ~ = ( l - a )  - / '  
/ = l  

where 

a = ( 1 - g - i ' ) 8 - ( "  , ,/;)c. b = ( 1  _ g - c ) - ~  

Then 

0 < I v '  n V  n _ l  " ' "  P p + l  - 1 < ( 1  - a )  - h -  1 < - -  
ba 

(1 - - a ) / '  

< ( 1 - 6 -A) g"~/" c + ~'/'b6 -pc 

The  latter gives 

with appropr ia te  K />O.  | 
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The proof of Theorem 2 follows directly from Lemmas 4.1, 4.4, 
and 4.5. We conclude the paper with the following remarks. 

1. For ). e (0, 1/2), the behavior of our hierarchical model at and 
above the critical temperature is similar for all initial measures 2. which are 
chosen in the Lee-Yang class of measures and satisfy the restrictions (1.8). 
This behavior corresponds to that described by Bleher and Major. ~2" 31 

2. The first restriction in (1.8) seems to be purely technical. But it 
actually plays a considerably more important role in our theory. This 
restriction selects the starting measures for which the exponential decay of 

{l~o,, l} [see (4.17) and above] holds Vn~Z+.  We believe, the sequence ^ ~ 2 i 
but unfortunately cannot prove, that for 2" with large I~p~ I1, the decay of 

^(21 {Ir#,, I} will be slower until t 3 becomes valid. This slow decay will last 
longer and longer (with respect to n) when r becomes smaller and 
smaller with /l approaching 1/2. Such a slow decay for all n~Z+ will 
characterize the situation at the critical point and 2 = 1/2. This picture 
agrees with that described in refs. 4 and 6. Such an agreement has another 
supporting argument. It lies in the fact that the triviality of the ~o 4 model 
(corresponding to ). = 1/2) is also based on the second Lebowitz inequality 
[see Eq. (15.54) in ref. 4]. But the latter was proved to hold for all ferro- 
magnetic spin models with the initial measure 2" possessing the Lee-Yang 
property.~ "~ 
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